Showing contents for:

Analytics

Health Catalyst Recommends

Analytics - Recently Added

Short on time? We've picked the best content for you to start with.

How to Avoid the 3 Most Common Healthcare Analytics Pitfalls and Related Inefficiencies

Analytics are supposed to provide data-driven solutions, not additional healthcare analytics pitfalls and other related inefficiencies. Yet such issues are quite common. Becoming familiar with potential problems will help health systems avoid them in the future. The three common analytics pitfalls are point solutions, EHRs, and independent data marts located in many different databases. An EDW will counter all three of these problems. The two inefficiencies include report factories and flavor of the month projects. The solution that best overcomes these inefficiencies is a robust deployment system.

Read More
My Folder

Healthcare Analytics Adoption Model: A Framework and Roadmap (white paper)

Outlined for practical use in the healthcare industry, this eight-level, industry-specific roadmap acts as a guide for organizations striving to be truly data driven. Developed by an independent, cross-industry group, this white paper explains the Analytics Adoption Model, its history and purpose. Organizations can then use the model to determine direction, highlight goals and gauge progress, as well as see the next steps needed to achieve goals associated using data to drive and assess clinical improvements.

Read More
My Folder

The Best Approach to Healthcare Analytics

Healthcare has remained entrenched in its cottage industry-style of operation, even within huge medical centers and significant medical innovation. The result, as documented by Dr. John Wennberg’s Dartmouth Atlas of Health Care project , is unwarranted variation in the practice of medicine and in the use of medical resources including underuse of effective care, misuse of care, and overuse of care provided to specific patient populations. The root of the problem, Wennberg concludes, is that there is no healthcare “system.” At Health Catalyst, we agree. Healthcare needs to be systematized and standardized in three key areas:1) healthcare analytics or measurement, 2) adoption or how teams and work are organized, and 3) best practice or how evidence/knowledge is gathered, evaluated, and disseminated for adoption.

Read More
My Folder

Analytics - Additional Content

Spend time reading content for you

How to Evaluate Emerging Healthcare Technology With Innovative Analytics

As healthcare systems are pressured to cut costs and still provide high-quality care, they will need to look across the care continuum for answers, reduce variation in care, and look to emerging technologies. This article walks through how to evaluate the safety and effectiveness and of emerging healthcare technology and prioritize high-impact improvement projects using a robust data analytics platform. Topics covered include:

  • The importance of identifying variation in innovation.
  • Ways to improve outcomes and decrease costs.
  • The value of an analytics platform.
  • The reliable information that produce sparks for innovation.
  • Identifying and evaluating emerging healthcare technology.
  • Knowing what data to use.
  • The difference between efficacy and effectiveness in evaluation of emerging healthcare technology.

Read More
My Folder

The Digitization of Healthcare: Why the Right Approach Matters and Five Steps to Get There

While many industries are leveraging digital transformation to accelerate their productivity and quality, healthcare ranks among the least digitized sectors. Healthcare data is largely incomplete when it comes to fully representing a patient’s health and doesn’t adequately support diagnoses and treatment, risk prediction, and long-term health care plans. But even with the obvious urgency for increased healthcare digitization, the industry must raise this trajectory with sensitivity to the impacts on clinicians and patients. The right digital strategy will not only aim for more comprehensive information on patient health, but also leverage data to empower and engage the people involved. Health systems can follow five guidelines to digitize in a sustainable, impactful way:

  1. Achieve and maintain clinician and patient engagement.
  2. Adopt a modern commercial digital platform.
  3. Digitize the assets (the patients) and the processes.
  4. Understand the importance of data to drive AI insights.
  5. Prioritize data volume.

Read More
My Folder

The Missing Ingredient in Healthcare Analytics: The Executive Sponsor

Despite the complexity of healthcare analytics, one key strategy for effective, sustainable analytics stands out: designating an executive sponsor to oversee the program. This sponsor is a C-suite level leader who’s committed to championing analytics throughout the organization and has the influence and relationships to drive widespread outcomes improvement. Healthcare executives can use four criteria to identify a great executive sponsor for their analytics programs:

  1. Have a single accountable leader.
  2. Find a sponsor with passion for and knowledge about data.
  3. Choose organizational clout and a vision for analytics over a specific title.
  4. Build a partnership with the CIO.

Read More
My Folder

How to Achieve Your Clinical Data Analytics Goals

Healthcare organizations know that they need to an effective clinical data analytics strategy to improve and survive in today’s challenging environment. In order to make these necessary improvements, healthcare leaders need to establish clear goals for their clinical data analytics initiatives. Achieving these goals requires clinical teams to clearly identify problems and plan for how to achieve them. This article walks improvement teams through sometimes confusing process of identifying problems, setting clear, achievable goals, and common pitfalls along the way. Topics covered include:

  • Six categories of clinical data.
  • Three types of goals: outcome, process, and balance.
  • How to write an outcome goal.
  • Internal vs. External Benchmarks.
  • Mitigation strategies.
  • Getting clinical buy-in.

Read More
My Folder

Healthcare NLP: Four Essentials to Make the Most of Unstructured Data

Many health systems are eager to embrace the capability of natural language processing (NLP) to access the vast patient insights recorded as unstructured text in clinical notes and records. Many healthcare data and analytics teams, however, aren’t experienced in or prepared for the unique challenges of working with text and, specifically, don’t have the knowledge to transform unstructured text into a usable format for NLP. Data engineers can follow four need-to-know principles to meet and overcome the challenges of making unstructured text available for advanced NLP analysis:

  1. Text is bigger and more complex.
  2. Text comes from different data sources.
  3. Text is stored in multiple areas.
  4. Text user documentation patterns matter.

Read More
My Folder

The Number One Secret of Highly Effective Healthcare Data Analysts

Data-driven quality improvement is propelling healthcare transformation. The ability to strategically leverage healthcare data is essential, making highly effective data analysts more valuable than ever. So, what attributes differentiate a good data analyst from a great analyst? Stephen Covey’s well-known book “The 7 Habits of Highly Effective People,” has long had far-reaching impacts in the business world. These same principles are relevant today and applicable in the world of healthcare analytics. Learn how Covey’s second habit, “Begin With the End in Mind,” drives great healthcare data analysts.

Read More
My Folder

Cloud-Based Open-Platform Data Solutions: The Best Way to Meet Today’s Growing Health Data Demands

Smartphone applications, home monitoring equipment, genomic sequencing, and social determinants of health are adding significantly to the scope of healthcare data, creating new challenges for health systems in data management and storage. Traditional on-premises data warehouses, however, don’t have the capacity or capabilities to support this new era of bigger healthcare data. Organizations must add more secure, scalable, elastic, and analytically agile cloud-based, open-platform data solutions that leverage analytics as a service (AaaS). Moving toward cloud hosting will help health systems avoid the five common challenges of on-premises data warehouses:

  1. Predicting future demand is difficult.
  2. Infrastructure scaling is lumpy and inelastic.
  3. Security risk mitigation is a major investment.
  4. Data architectures limit flexibility and are resource intensive.
  5. Analytics expertise is misallocated.

Read More
My Folder

Employer Health Plans: Keys to Lowering Cost, Boosting Benefits

Employers that offer robust employee health plans at affordable costs are more likely to attract and retain a great workforce. Healthcare, however, is often a top expense for organizations, making balancing attractive benefits with attractive costs a complex undertaking. Employers need a deep understanding of employee populations and opportunities to manage health plan costs without sacrificing quality. An analytics-driven approach to employee population health management gives employers insight into two key steps to lower healthcare costs and enhance benefits:

  1. Manage easily fixed cost issues.
  2. Use healthcare cost savings to fund expanded benefits.

Read More
My Folder

Transforming Healthcare Analytics: Five Critical Steps

By committing to transforming healthcare analytics, organizations can eventually save hundreds of millions of dollars (depending on their size) and achieve comprehensive outcomes improvement. The transformation helps organizations achieve the analytics efficiency needed to navigate the complex healthcare landscape of technology, regulatory, and financial challenges and the challenges of value-based care. To achieve analytics transformation and ROI within a short timeframe, organizations can follow five phases to become data driven:

  1. Establish a data-driven culture.
  2. Acquire and access data.
  3. Establish data stewardship.
  4. Establish data quality.
  5. Spread data use.

Read More
My Folder

Advanced Analytics Holds the Key to Achieve the Triple Aim and Survive Value-based Purchasing

Every hospital and health system has to juggle significant IT needs with a limited budget. In the middle of these demands and possibilities, hospital executives have to prioritize and decide which technology solutions are the most critical to the health of their organization. I call these most critical IT solutions “survival software.” Advanced clinical analytics solutions are the survival software of the near future, as they really hold the key to achieving the triple aim and survive value-based purchasing.

Read More
My Folder

Five Lessons for Building Adaptive Healthcare Data Models that Support Innovation

Healthcare data models are the backbone of innovation in healthcare, without which many new technologies may never come to fruition, so it’s important to build models that focus on relevant content and specific use cases. Health Catalyst has been continuously refining its approach to building concise yet adaptive healthcare data models for years. Because of our experience, we’ve learned five key lessons when it comes to building healthcare data models:

  1. Focus on relevant content.
  2. Externally validate the model.
  3. Commit to providing vital documentation.
  4. Prioritize long-term planning.
  5. Automate data profiling.
These lessons are essential to apply when building adaptive healthcare data models (and their corresponding methodologies, tools, and best practices) given the prominent role they play in fueling the technologies designed to solve healthcare’s toughest problems.

Read More
My Folder

Healthcare Analytics Platform: DOS Delivers the 7 Essential Components

The Data Operating System (DOS™) is a vast data and analytics ecosystem whose laser focus is to rapidly and efficiently improve outcomes across every healthcare domain. DOS is a cornerstone in the foundation for building the future of healthcare analytics. This white paper from Imran Qureshi details the seven capabilities of DOS that combine to unlock data for healthcare improvement:

  1. Acquire
  2. Organize
  3. Standardize
  4. Analyze
  5. Deliver
  6. Orchestrate
  7. Extend
These seven components will reveal how DOS is a data-first system that can extract value from healthcare data and allow leadership and analytics teams to fully develop the insights necessary for health system transformation.

Read More
My Folder

The Healthcare Analytics Ecosystem: A Must-Have in Today’s Transformation

Healthcare organizations seeking to achieve the Quadruple Aim (enhancing patient experience, improving population health, reducing costs, and reducing clinician and staff burnout), will reach their goals by building a rich analytics ecosystem. This environment promotes synergy between technology and highly skilled analysts and relies on full interoperability, allowing people to derive the right knowledge to transform healthcare. Five important parts make up the healthcare analytics ecosystem:

  1. Must-have tools.
  2. People and their skills.
  3. Reactive, descriptive, and prescriptive analytics.
  4. Matching technical skills to analytics work streams.
  5. Interoperability.

Read More
My Folder

How to Evaluate a Clinical Analytics Vendor: A Checklist

Based on 25 years of healthcare IT experience, Dale outlines a detailed set of criteria for evaluating clinical analytic vendors. These criteria include 1) completeness of vision, 2) culture and values of senior leadership, 3) ability to execute, 4) technology adaptability and supportability, 5) total cost of ownership, 6) company viability, and 7) nine elements of technical specificity including data modeling, master data management, metadata, white space data, visualization, security, ETL, performance and utilization metrics, hardware and software infrastructure.

Read More
My Folder

Chilmark Report Studies the 2017 Healthcare Analytics Market Trends and Vendors

Chilmark’s 2017 Healthcare Analytics Market Trends Report is a trove of insights to the analytics solutions driving the management of population health and the transition to new reimbursement models. The report reviews the analytics market forces at work, such as:

  • The need to optimize revenue under diverse payment models.
  • The increasing importance of analytics in general, and a platform in specific, that can aggregate all data.
  • Continuing confusion about how to react to MIPS and APMs.
  • The growing importance of providing a comprehensive set of open and standard APIs.
  • The need for better tools to create analytics-ready data stores.
The report is also a succinct guide to the 17 leading analytics vendors (which represent EHR, HIE, payer, and independent categories) with the most promising products, technology, and services offerings in the market.

Read More
My Folder

Closed-Loop Analytics Approach: Making Healthcare Data Actionable

Healthcare organizations rely on data to support informed decisions. To be truly valuable, data must be high quality and meet two criteria for end-users:

  1. Data must be transformed from its raw, obscure form into actionable insights.
  2. Data-driven insights must be immediately accessible at the point of care (versus in static dashboards or buried on the intranet).
Closed-Loop Analytics™ methodology transforms raw data into actionable, accessible insight—providing physicians and nurses with critical insight into their patients’ situation and how they can effectively intervene. A Closed-Loop Analytics approach will become increasingly essential as healthcare becomes more systems dependent.

Read More
My Folder