Showing contents for:

AI

Health Catalyst Recommends

AI - Recently Added

Short on time? We've picked the best content for you to start with.

Meaningful Machine Learning Visualizations for Clinical Users: A Framework

Health systems can leverage the predictive potential of machine learning to improve outcomes, lower costs, and save lives. Machine learning, however, doesn’t inherently produce insights that are actionable in the clinical setting, and frontline clinicians need information that’s accessible and meaningful at the point of care. Thoughtfully designed visualizations of machine learning insights are a powerful way to give clinical users the information they need, when and how they need it, to support informed decision making. A design framework for machine learning visualizations addresses three key questions about who will use the decision-support insights and how:

  1. People: who are the targeted users?
  2. Context: in what context or environment do they work?
  3. Activities: what activities do they perform?

Read More
My Folder

AI - Additional Content

Spend time reading content for you

Artificial Intelligence in Healthcare: A Change Management Problem

The key to successfully leveraging artificial intelligence (AI) in healthcare rests not wholly in the technical aspects of predictive and prescriptive machines but also in change management within healthcare organizations. Better adoption and results with AI rely on a commitment to the challenge of change, the right tools, and a human-centered perspective. To succeed in change management and get optimal value from predictive and prescriptive models, clinical and operational leaders must use three perspectives:

  1. Functional: Does the model make sense?
  2. Contextual: Does the model fit into the workflow?
  3. Operational: What benefits and risks are traded?

Read More
My Folder

Machine Learning Tools Unlock the Most Critical Insights from Unstructured Health Data

Patient comments such as “I feel dizzy” or “my stomach hurts” can tell clinicians a lot about an individual’s health, as can additional background, including zip code, employment status, access to transportation, and more. This critical information, however, is captured as free text, or unstructured data, making it impossible for traditional analytics to leverage. Machine learning tools (e.g., NLP and text mining) help health systems better understand the patient and their circumstances by unlocking valuable insights residing unstructured data:

  1. NLP analyzes large amounts of natural language data for human users.
  2. Text mining derives value through the analysis of mass amounts of text (e.g., word frequency, length of words, etc.).

Read More
My Folder

A New Era of Personalized Medicine: The Power of Analytics and AI

Healthcare is looking towards an era of personalized medicine in which providers customize treatments for the individual patient. Realizing this tailored level of care s a new level of data volume and analytics and AI capabilities that, while novel to healthcare, other industries are thriving in. Choosing the right role models as healthcare works towards the analytics- and AI-driven territory of personalized medicine will guide informed strategies and establish best practices. With experience and expertise in these key areas, the military, aerospace, and automotive industries can serve as healthcare’s best examples:

  1. The human cognitive processes of complex decision making.
  2. The digitization of their industries, with the “health” of their assets as key drivers.
  3. Operating in a “big data” ecosystem.

Read More
My Folder

How Artificial Intelligence Can Overcome Healthcare Data Security Challenges and Improve Patient Trust

As healthcare organizations today face more security threats than ever, artificial intelligence (AI) combined with human judgment is emerging as the perfect pair to improve healthcare data security. Together, they power a highly accurate privacy analytics model that allows organizations to review access points to patient data and detect when a system’s EHR is potentially exposed to a privacy violation, attack, or breach. With specific techniques, including supervised and unsupervised machine learning and transparent AI methods, health systems can advance toward more predictive, analytics-based, collaborative privacy analytics infrastructures that safeguard patient privacy.

Read More
My Folder

Healthcare Data Management: Three Principles of Using Data to Its Full Potential

Author Douglas Laney is now tackling the topic of Infonomics: the practice of information economics. In his 2017 book, Infonomics: How to Monetize, Manage, and Measure Information as an asset for competitive advantage, Laney provides detailed rationale as well as a thoughtful framework for treating information as a modern-day organization’s most valuable asset. This article walks through how healthcare organizations can leverage data to its full potential using this framework and the three principles of infonomics:

  • Measure - How much data does the organization have? What is it worth?
  • Manage - What data does the organization have? Where is it stored?
  • Monetize - How does the organization use data?

Read More
My Folder

Healthcare NLP: The Secret to Unstructured Data’s Full Potential

While healthcare data is an ever-growing resource, thanks to broader EHR adoption and new sources (e.g., patient-generated data), many health systems aren’t currently leveraging this information cache to its full potential. Analysts can’t extract and analyze a significant portion of healthcare data (e.g., follow-up appointments, vitals, charges, orders, encounters, and symptoms) because it’s in an unstructured, or text, form, which is bigger and more complex than structured data. Natural language processing (NLP) taps into the potential of unstructured data by using artificial intelligence (AI) to extract and analyze meaningful insights from the estimated 80 percent of health data that exists in text form. Though still an evolving capability, NLP is showing promise in helping organizations get more from their data.

Read More
My Folder

Customer Journey Analytics: Cracking the Patient Engagement Challenge for Payers

Customer journey analytics uses machine learning and big data to track and analyze when and through what channels customers interact with an organization, with an aim to influence behavior (e.g., buying behaviors among retail customers). Similarly, healthcare organizations want to influence health-related behaviors, such a taking medication as prescribed and not smoking, to improve outcomes and lower the cost of care. In a partnership with an analytics services provider, a payer organization is leveraging customer journey analytics among healthcare consumers to identify the best opportunities and channels for patient outreach. With this analytics-driven engagement strategy, the payer has found an opportunity to significantly improve patient engagement—a predicted overall increase from 18 percent to 31 percent.

Read More
My Folder

Reducing Hospital Readmissions: A Case for Integrated Analytics

Health systems continue to prioritize reducing hospital readmissions as part of their value-based payment and population health strategies. But organizations that aren’t fully integrating analytics into their readmission reduction workflows struggle to meet improvement goals. By embedding predictive models across the continuum of care, versus isolated them in episodes of care, health systems can leverage analytics for meaningful improvement. Organizations that integrate predictive models into readmissions reduction workflows have achieved as much as a 40 percent reduction in risk-adjusted readmissions indexes. Effective analytics integration strategies use a multidisciplinary development approach to meet the needs of a patient’s entire care team and deliver common tools for all involved in the patient’s healthcare journey.

Read More
My Folder

Healthcare NLP: Four Essentials to Make the Most of Unstructured Data

Many health systems are eager to embrace the capability of natural language processing (NLP) to access the vast patient insights recorded as unstructured text in clinical notes and records. Many healthcare data and analytics teams, however, aren’t experienced in or prepared for the unique challenges of working with text and, specifically, don’t have the knowledge to transform unstructured text into a usable format for NLP. Data engineers can follow four need-to-know principles to meet and overcome the challenges of making unstructured text available for advanced NLP analysis:

  1. Text is bigger and more complex.
  2. Text comes from different data sources.
  3. Text is stored in multiple areas.
  4. Text user documentation patterns matter.

Read More
My Folder

Meaningful Machine Learning Visualizations for Clinical Users: A Framework

Health systems can leverage the predictive potential of machine learning to improve outcomes, lower costs, and save lives. Machine learning, however, doesn’t inherently produce insights that are actionable in the clinical setting, and frontline clinicians need information that’s accessible and meaningful at the point of care. Thoughtfully designed visualizations of machine learning insights are a powerful way to give clinical users the information they need, when and how they need it, to support informed decision making. A design framework for machine learning visualizations addresses three key questions about who will use the decision-support insights and how:

  1. People: who are the targeted users?
  2. Context: in what context or environment do they work?
  3. Activities: what activities do they perform?

Read More
My Folder

Three Ways Evidence-Based Medicine Improves Machine Learning

As health systems continue to adopt machine learning to impact significant outcomes (e.g., reducing readmissions, preventing hospital-acquired infections, and reducing length of stay), they must also leverage evidence-based medicine. Evidence adds critical insight to machine learning models, ensuring that models incorporate all necessary variables in their risk prediction, and builds credibility among clinicians. Evidence-based medicine brings three essential elements to healthcare machine learning:

  1. Boosts machine learning model credibility.
  2. Engages data experts around healthcare projects.
  3. Saves time and money and increases ROI.

Read More
My Folder

Cloud-Based Open-Platform Data Solutions: The Best Way to Meet Today’s Growing Health Data Demands

Smartphone applications, home monitoring equipment, genomic sequencing, and social determinants of health are adding significantly to the scope of healthcare data, creating new challenges for health systems in data management and storage. Traditional on-premises data warehouses, however, don’t have the capacity or capabilities to support this new era of bigger healthcare data. Organizations must add more secure, scalable, elastic, and analytically agile cloud-based, open-platform data solutions that leverage analytics as a service (AaaS). Moving toward cloud hosting will help health systems avoid the five common challenges of on-premises data warehouses:

  1. Predicting future demand is difficult.
  2. Infrastructure scaling is lumpy and inelastic.
  3. Security risk mitigation is a major investment.
  4. Data architectures limit flexibility and are resource intensive.
  5. Analytics expertise is misallocated.

Read More
My Folder

Machine Learning in Healthcare: What C-Suite Executives Must Know to Use it Effectively in Their Organizations

Machine learning (ML) is gaining in popularity throughout healthcare. ML’s far-reaching benefits, from automating routine clinical tasks to providing visibility into which appointments are likely to no-show, make it a must-have in an industry that’s hyper focused on improving patient and operational outcomes. This executive report—co-written by Microsoft Worldwide Health and Health Catalyst—is a basic guide to training machine learning algorithms and applying machine learning models to clinical and operational use case. This report shares practical, proven techniques healthcare organizations can use to improve their performance on a range of issues.

Read More
My Folder

The Future of Healthcare AI: An Honest, Straightforward Q&A

Health Catalyst President of Technology, Dale Sanders, gives straightforward answers to tough questions about the future of AI in healthcare. He starts by debunking a common belief: We are awash in valuable data in healthcare as a consequence of EHR adoption. The truth involves a need for deeper data about a patient.

Read More
My Folder

How Healthcare Text Analytics and Machine Learning Work Together to Improve Patient Outcomes

Healthcare organizations that leverage both text analytics and machine learning are better positioned to improve patient outcomes. Used in tandem, text analytics and machine learning can significantly improve the accuracy of risk scores, used widely in healthcare to help clinicians identify patients at high risk for certain conditions and, therefore, intervene. Health systems can run machine learning models with input from text analytics to provide tailored risk predictions on both unstructured and structured data. The result? More accurate risk scores and the ability to identify every patient’s level of risk in time to inform decisions about their care.

Read More
My Folder

Why Health Systems Must Use Data Science to Improve Outcomes

In today’s improvement-driven healthcare environment, organizations must ensure that improvement measures help them reach desired outcomes and focus on the opportunities with optimal ROI. With data science-based analysis, health systems leverage machine learning to determine if improvement measures align with specific outcomes and avoid the risk and cost of carrying out interventions that are unlikely to support their goals. There are four essential reasons that insights from data science help health systems implement and sustain improvement:

  1. Measures aligned with desired outcomes drive improvement.
  2. Improvement teams focus on processes they can impact.
  3. Outcome-specific interventions might impact other outcomes.
  4. Identifies opportunities with optimal ROI.

Read More
My Folder